Batch sorption experiments are carried out for Ni and Sr combined with quartz, K-feldspar, and muscovite. The following experimental boundary conditions are used:

  • Minerals: quartz, K-feldspar, muscovite
  • Elements: Ni2+, Sr2+
  • Initial element concentration (c0): 10-5 -10-8 mol L-1
  • Solid-liquid ratio (SLR): 12.5 - 200 g L-1
  • pH: 3 - 9
  • Background electrolyte: 0.001 - 0.2 mol L-1 NaClO4, Na2SO4 plus additionally NaHCO3 and/or Na2CO3 for adjustment of pH > 7
  • Atmospheric conditions


Results mainly follow expectations for all batch experiments. Generally, pH, c0, SLR, and ionic strengths dependencies are observed as can be exemplarily seen in Fig. 1 regarding batch data comprising 12.5 g L-1 muscovite and varying initial Ni concentrations.









Fig. 1: Results of Ni batch experiments with 12.5 g L-1 muscovite in 0.01 and 0.1 mol L-1 NaClO4 solutions.

In the following step, batch sorption data is used to determine surface complexation parameters via inverse modeling with PHREEQC (Parkhurst and Appelo, 1999) in combination with UCODE (Poeter et al., 2005) which then are used to simulate reactive transport in column experiments and are included in the thermodynamic database to generate smart Kd-values.

Detailed information concerning the experimental set-up, data evaluation, and results are available in Noseck et al. (2012), Fricke (2014), Noseck et al. (2018) and Britz (2018). In addition, a PhD thesis is going to be published in 2021 (Ni2+ sorption and transport processes).


Contact: Julian Fricke



Noseck, U., Brendler, V., Flügge, J., Stockmann, M., Britz, S., Lampe, M., Schikora, J., Schneider, A. (2012). Realistic integration of sorption processes in transport codes for long-term savety assessments. GRS-297, BMWi-FKZ 02E10518, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig, 293 p.

Noseck, U., Brendler, V., Britz, S., Stockmann, M., Fricke, J., Richter, C., Lampe, M., Gehrke, A., Flügge, J., (2018). Smart Kd-concept for long-term safety assessments – Extension towards more complex applications. Report GRS-500, BMWi-FKZ Nos. 02 E 11072A and 02 E 11072B. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Braunschweig.

Parkhurst, D.L. & Appelo, C.A.J., (1999). User’s guide to PHREEQC (Version 2) - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Water-Resources Investigations Report 99-4259, 312 p.

Poeter, E.P., Hill, M.C., Banta E.R., Mehl, S., Christensen, S. (2005). UCODE_2005 and Six Other Computer Codes for Universal Sensitivity Analysis, Calibration, and Uncertainty Evaluation, U.S Geological Survey, Techniques and Methods 6-A11, 299 p.

Britz, S.: Europium sorption experiments with muscovite, orthoclase, and quartz: Modeling of surface complexation and reactive transport, PhD thesis, DOI 10.24355/dbbs.084-201806051207-0, GRS Braunschweig, Theodor-Heuss-Sr. 4, Abt. 401, 38122 Braunschweig (2018).

Fricke, J.: Sorption of Europium on Quartz – Batch experiments and geochemical modelling, Master thesis, available at: GRS Braunschweig, Theodor-Heuss-Sr. 4, Abt. 401, 38122 Braunschweig (2014).


Back to Batch Experiments